
10 ROTATIONAL MOTION AND ANGULAR
MOMENTUM

Figure 10.1 The mention of a tornado conjures up images of raw destructive power. Tornadoes blow houses away as if they were made of paper and have been known to
pierce tree trunks with pieces of straw. They descend from clouds in funnel-like shapes that spin violently, particularly at the bottom where they are most narrow, producing
winds as high as 500 km/h. (credit: Daphne Zaras, U.S. National Oceanic and Atmospheric Administration)
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Introduction to Rotational Motion and Angular Momentum
Why do tornadoes spin at all? And why do tornados spin so rapidly? The answer is that air masses that produce tornadoes are themselves rotating,
and when the radii of the air masses decrease, their rate of rotation increases. An ice skater increases her spin in an exactly analogous manner as
seen in Figure 10.2. The skater starts her rotation with outstretched limbs and increases her spin by pulling them in toward her body. The same
physics describes the exhilarating spin of a skater and the wrenching force of a tornado.

Clearly, force, energy, and power are associated with rotational motion. These and other aspects of rotational motion are covered in this chapter. We
shall see that all important aspects of rotational motion either have already been defined for linear motion or have exact analogs in linear motion.
First, we look at angular acceleration—the rotational analog of linear acceleration.
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Figure 10.2 This figure skater increases her rate of spin by pulling her arms and her extended leg closer to her axis of rotation. (credit: Luu, Wikimedia Commons)

10.1 Angular Acceleration
Uniform Circular Motion and Gravitation discussed only uniform circular motion, which is motion in a circle at constant speed and, hence, constant
angular velocity. Recall that angular velocity ω was defined as the time rate of change of angle θ :

(10.1)ω = Δθ
Δt ,

where θ is the angle of rotation as seen in Figure 10.3. The relationship between angular velocity ω and linear velocity v was also defined in
Rotation Angle and Angular Velocity as

(10.2)v = rω
or

(10.3)ω = v
r ,

where r is the radius of curvature, also seen in Figure 10.3. According to the sign convention, the counter clockwise direction is considered as
positive direction and clockwise direction as negative

Figure 10.3 This figure shows uniform circular motion and some of its defined quantities.

Angular velocity is not constant when a skater pulls in her arms, when a child starts up a merry-go-round from rest, or when a computer’s hard disk
slows to a halt when switched off. In all these cases, there is an angular acceleration, in which ω changes. The faster the change occurs, the
greater the angular acceleration. Angular acceleration α is defined as the rate of change of angular velocity. In equation form, angular acceleration is
expressed as follows:

(10.4)α = Δω
Δt ,

where Δω is the change in angular velocity and Δt is the change in time. The units of angular acceleration are (rad/s)/s , or rad/s2 . If ω
increases, then α is positive. If ω decreases, then α is negative.

Example 10.1 Calculating the Angular Acceleration and Deceleration of a Bike Wheel

Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of 250 rpm in 5.00 s. (a)

Calculate the angular acceleration in rad/s2 . (b) If she now slams on the brakes, causing an angular acceleration of – 87.3 rad/s2 , how long
does it take the wheel to stop?

322 CHAPTER 10 | ROTATIONAL MOTION AND ANGULAR MOMENTUM

This content is available for free at http://cnx.org/content/col11406/1.7



Strategy for (a)

The angular acceleration can be found directly from its definition in α = Δω
Δt because the final angular velocity and time are given. We see that

Δω is 250 rpm and Δt is 5.00 s.

Solution for (a)

Entering known information into the definition of angular acceleration, we get

(10.5)α = Δω
Δt

= 250 rpm
5.00 s .

Because Δω is in revolutions per minute (rpm) and we want the standard units of rad/s2 for angular acceleration, we need to convert Δω
from rpm to rad/s:

(10.6)Δω = 250 rev
min ⋅ 2π rad

rev ⋅ 1 min
60 sec

= 26.2rad
s .

Entering this quantity into the expression for α , we get

(10.7)α = Δω
Δt

= 26.2 rad/s
5.00 s

= 5.24 rad/s2.
Strategy for (b)

In this part, we know the angular acceleration and the initial angular velocity. We can find the stoppage time by using the definition of angular
acceleration and solving for Δt , yielding

(10.8)Δt = Δω
α .

Solution for (b)

Here the angular velocity decreases from 26.2 rad/s (250 rpm) to zero, so that Δω is – 26.2 rad/s , and α is given to be – 87.3 rad/s2 .
Thus,

(10.9)Δt = – 26.2 rad/s
– 87.3 rad/s2

= 0.300 s.
Discussion

Note that the angular acceleration as the girl spins the wheel is small and positive; it takes 5 s to produce an appreciable angular velocity. When
she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes to zero. In both cases, the relationships are
analogous to what happens with linear motion. For example, there is a large deceleration when you crash into a brick wall—the velocity change
is large in a short time interval.

If the bicycle in the preceding example had been on its wheels instead of upside-down, it would first have accelerated along the ground and then
come to a stop. This connection between circular motion and linear motion needs to be explored. For example, it would be useful to know how linear
and angular acceleration are related. In circular motion, linear acceleration is tangent to the circle at the point of interest, as seen in Figure 10.4.
Thus, linear acceleration is called tangential acceleration at .
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Figure 10.4 In circular motion, linear acceleration a , occurs as the magnitude of the velocity changes: a is tangent to the motion. In the context of circular motion, linear
acceleration is also called tangential acceleration at .

Linear or tangential acceleration refers to changes in the magnitude of velocity but not its direction. We know from Uniform Circular Motion and
Gravitation that in circular motion centripetal acceleration, ac , refers to changes in the direction of the velocity but not its magnitude. An object

undergoing circular motion experiences centripetal acceleration, as seen in Figure 10.5. Thus, at and ac are perpendicular and independent of

one another. Tangential acceleration at is directly related to the angular acceleration α and is linked to an increase or decrease in the velocity, but

not its direction.

Figure 10.5 Centripetal acceleration ac occurs as the direction of velocity changes; it is perpendicular to the circular motion. Centripetal and tangential acceleration are thus

perpendicular to each other.

Now we can find the exact relationship between linear acceleration at and angular acceleration α . Because linear acceleration is proportional to a

change in the magnitude of the velocity, it is defined (as it was in One-Dimensional Kinematics) to be

(10.10)at = Δv
Δt .

For circular motion, note that v = rω , so that

(10.11)at = Δ(rω)
Δt .

The radius r is constant for circular motion, and so Δ(rω) = r(Δω) . Thus,

(10.12)at = rΔω
Δt .

By definition, α = Δω
Δt . Thus,

(10.13)at = rα,

or

(10.14)α = at
r .

These equations mean that linear acceleration and angular acceleration are directly proportional. The greater the angular acceleration is, the larger
the linear (tangential) acceleration is, and vice versa. For example, the greater the angular acceleration of a car’s drive wheels, the greater the
acceleration of the car. The radius also matters. For example, the smaller a wheel, the smaller its linear acceleration for a given angular acceleration
α .
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Example 10.2 Calculating the Angular Acceleration of a Motorcycle Wheel

A powerful motorcycle can accelerate from 0 to 30.0 m/s (about 108 km/h) in 4.20 s. What is the angular acceleration of its 0.320-m-radius
wheels? (See Figure 10.6.)

Figure 10.6 The linear acceleration of a motorcycle is accompanied by an angular acceleration of its wheels.

Strategy

We are given information about the linear velocities of the motorcycle. Thus, we can find its linear acceleration at . Then, the expression

α = at
r can be used to find the angular acceleration.

Solution

The linear acceleration is

(10.15)at = Δv
Δt

= 30.0 m/s
4.20 s

= 7.14 m/s2.

We also know the radius of the wheels. Entering the values for at and r into α = at
r , we get

(10.16)α = at
r

= 7.14 m/s2

0.320 m
= 22.3 rad/s2.

Discussion

Units of radians are dimensionless and appear in any relationship between angular and linear quantities.

So far, we have defined three rotational quantities— θ, ω , and α . These quantities are analogous to the translational quantities x, v , and a .

Table 10.1 displays rotational quantities, the analogous translational quantities, and the relationships between them.

Table 10.1 Rotational and Translational Quantities

Rotational Translational Relationship

θ x θ = x
r

ω v ω = v
r

α a α = at
r

Making Connections: Take-Home Experiment

Sit down with your feet on the ground on a chair that rotates. Lift one of your legs such that it is unbent (straightened out). Using the other leg,
begin to rotate yourself by pushing on the ground. Stop using your leg to push the ground but allow the chair to rotate. From the origin where you
began, sketch the angle, angular velocity, and angular acceleration of your leg as a function of time in the form of three separate graphs.
Estimate the magnitudes of these quantities.

Check Your Understanding

Angular acceleration is a vector, having both magnitude and direction. How do we denote its magnitude and direction? Illustrate with an example.

Solution
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The magnitude of angular acceleration is α and its most common units are rad/s2 . The direction of angular acceleration along a fixed axis is
denoted by a + or a – sign, just as the direction of linear acceleration in one dimension is denoted by a + or a – sign. For example, consider a
gymnast doing a forward flip. Her angular momentum would be parallel to the mat and to her left. The magnitude of her angular acceleration
would be proportional to her angular velocity (spin rate) and her moment of inertia about her spin axis.

PhET Explorations: Ladybug Revolution

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or
angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.

Figure 10.7 Ladybug Revolution (http://cnx.org/content/m42177/1.4/rotation_en.jar)

10.2 Kinematics of Rotational Motion
Just by using our intuition, we can begin to see how rotational quantities like θ , ω , and α are related to one another. For example, if a motorcycle
wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly and rotates through many revolutions. In more technical
terms, if the wheel’s angular acceleration α is large for a long period of time t , then the final angular velocity ω and angle of rotation θ are large.
The wheel’s rotational motion is exactly analogous to the fact that the motorcycle’s large translational acceleration produces a large final velocity, and
the distance traveled will also be large.

Kinematics is the description of motion. The kinematics of rotational motion describes the relationships among rotation angle, angular velocity,
angular acceleration, and time. Let us start by finding an equation relating ω , α , and t . To determine this equation, we recall a familiar kinematic
equation for translational, or straight-line, motion:

(10.17)v = v0 + at     (constant a)

Note that in rotational motion a = at , and we shall use the symbol a for tangential or linear acceleration from now on. As in linear kinematics, we

assume a is constant, which means that angular acceleration α is also a constant, because a = rα . Now, let us substitute v = rω and a = rα
into the linear equation above:

(10.18)rω = rω0 + rαt.

The radius r cancels in the equation, yielding

(10.19)ω = ω0 + at     (constant a),

where ω0 is the initial angular velocity. This last equation is a kinematic relationship among ω , α , and t —that is, it describes their relationship

without reference to forces or masses that may affect rotation. It is also precisely analogous in form to its translational counterpart.

Making Connections

Kinematics for rotational motion is completely analogous to translational kinematics, first presented in One-Dimensional Kinematics.
Kinematics is concerned with the description of motion without regard to force or mass. We will find that translational kinematic quantities, such
as displacement, velocity, and acceleration have direct analogs in rotational motion.

Starting with the four kinematic equations we developed in One-Dimensional Kinematics, we can derive the following four rotational kinematic
equations (presented together with their translational counterparts):

Table 10.2 Rotational Kinematic Equations

Rotational Translational

θ = ω¯ t x = v- t

ω = ω0 + αt v = v0 + at (constant α , a )

θ = ω0t + 1
2αt2 x = v0t + 1

2at2 (constant α , a )

ω2 = ω0
2 + 2αθ v2 = v0

2 + 2ax (constant α , a )
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In these equations, the subscript 0 denotes initial values ( θ0 , x0 , and t0 are initial values), and the average angular velocity ω- and average

velocity v- are defined as follows:

(10.20)ω̄ = ω0 + ω
2  and v̄ = v0 + v

2 .

The equations given above in Table 10.2 can be used to solve any rotational or translational kinematics problem in which a and α are constant.

Problem-Solving Strategy for Rotational Kinematics
1. Examine the situation to determine that rotational kinematics (rotational motion) is involved. Rotation must be involved, but without the need

to consider forces or masses that affect the motion.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.

3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in terms of a
translational analog because by now you are familiar with such motion.

5. Substitute the known values along with their units into the appropriate equation, and obtain numerical solutions complete with units. Be
sure to use units of radians for angles.

6. Check your answer to see if it is reasonable: Does your answer make sense?

Example 10.3 Calculating the Acceleration of a Fishing Reel

A deep-sea fisherman hooks a big fish that swims away from the boat pulling the fishing line from his fishing reel. The whole system is initially at
rest and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of rotation. The reel is given an angular acceleration of

110 rad/s2 for 2.00 s as seen in Figure 10.8.

(a) What is the final angular velocity of the reel?

(b) At what speed is fishing line leaving the reel after 2.00 s elapses?

(c) How many revolutions does the reel make?

(d) How many meters of fishing line come off the reel in this time?

Strategy

In each part of this example, the strategy is the same as it was for solving problems in linear kinematics. In particular, known values are identified
and a relationship is then sought that can be used to solve for the unknown.

Solution for (a)

Here α and t are given and ω needs to be determined. The most straightforward equation to use is ω = ω0 + αt because the unknown is

already on one side and all other terms are known. That equation states that

(10.21)ω = ω0 + αt.

We are also given that ω0 = 0 (it starts from rest), so that

(10.22)ω = 0 + ⎛⎝110 rad/s2⎞⎠(2.00s) = 220 rad/s.

Solution for (b)

Now that ω is known, the speed v can most easily be found using the relationship

(10.23)v = rω,

where the radius r of the reel is given to be 4.50 cm; thus,

(10.24)v = (0.0450 m)(220 rad/s) = 9.90 m/s.

Note again that radians must always be used in any calculation relating linear and angular quantities. Also, because radians are dimensionless,
we have m×rad = m .

Solution for (c)

Here, we are asked to find the number of revolutions. Because 1 rev = 2π rad , we can find the number of revolutions by finding θ in radians.

We are given α and t , and we know ω 0 is zero, so that θ can be obtained using θ = ω0t + 1
2αt2 .

(10.25)θ = ω0t + 1
2αt2

= 0 + (0.500)⎛⎝110 rad/s2⎞⎠(2.00 s)2 = 220 rad.

Converting radians to revolutions gives
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(10.26)θ = (220 rad) 1 rev
2π rad = 35.0 rev.

Solution for (d)

The number of meters of fishing line is x , which can be obtained through its relationship with θ :

(10.27)x = rθ = (0.0450 m)(220 rad) = 9.90 m.

Discussion

This example illustrates that relationships among rotational quantities are highly analogous to those among linear quantities. We also see in this
example how linear and rotational quantities are connected. The answers to the questions are realistic. After unwinding for two seconds, the reel
is found to spin at 220 rad/s, which is 2100 rpm. (No wonder reels sometimes make high-pitched sounds.) The amount of fishing line played out
is 9.90 m, about right for when the big fish bites.

Figure 10.8 Fishing line coming off a rotating reel moves linearly. Example 10.3 and Example 10.4 consider relationships between rotational and linear quantities associated
with a fishing reel.

Example 10.4 Calculating the Duration When the Fishing Reel Slows Down and Stops

Now let us consider what happens if the fisherman applies a brake to the spinning reel, achieving an angular acceleration of – 300 rad/s2 .
How long does it take the reel to come to a stop?

Strategy

We are asked to find the time t for the reel to come to a stop. The initial and final conditions are different from those in the previous problem,

which involved the same fishing reel. Now we see that the initial angular velocity is ω0 = 220 rad/s and the final angular velocity ω is zero.

The angular acceleration is given to be α = −300 rad/s2 . Examining the available equations, we see all quantities but t are known in
ω = ω0 + αt, making it easiest to use this equation.

Solution

The equation states

(10.28)ω = ω0 + αt.

We solve the equation algebraically for t, and then substitute the known values as usual, yielding

(10.29)t = ω − ω0
α = 0 − 220 rad/s

−300 rad/s2 = 0.733 s.

Discussion

Note that care must be taken with the signs that indicate the directions of various quantities. Also, note that the time to stop the reel is fairly small
because the acceleration is rather large. Fishing lines sometimes snap because of the accelerations involved, and fishermen often let the fish
swim for a while before applying brakes on the reel. A tired fish will be slower, requiring a smaller acceleration.

Example 10.5 Calculating the Slow Acceleration of Trains and Their Wheels

Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its 0.350-m-radius wheels an angular

acceleration of 0.250 rad/s2 . After the wheels have made 200 revolutions (assume no slippage): (a) How far has the train moved down the
track? (b) What are the final angular velocity of the wheels and the linear velocity of the train?

Strategy

In part (a), we are asked to find x , and in (b) we are asked to find ω and v . We are given the number of revolutions θ , the radius of the
wheels r , and the angular acceleration α .

Solution for (a)
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The distance x is very easily found from the relationship between distance and rotation angle:

(10.30)θ = x
r .

Solving this equation for x yields

(10.31)x = rθ.
Before using this equation, we must convert the number of revolutions into radians, because we are dealing with a relationship between linear
and rotational quantities:

(10.32)θ = (200 rev)2π rad
1 rev = 1257 rad.

Now we can substitute the known values into x = rθ to find the distance the train moved down the track:

(10.33)x = rθ = (0.350 m)(1257 rad) = 440 m.

Solution for (b)

We cannot use any equation that incorporates t to find ω , because the equation would have at least two unknown values. The equation

ω2 = ω0
2 + 2αθ will work, because we know the values for all variables except ω :

(10.34)ω2 = ω0
2 + 2αθ

Taking the square root of this equation and entering the known values gives

(10.35)
ω = ⎡

⎣0 + 2(0.250 rad/s2)(1257 rad)⎤⎦
1 / 2

= 25.1 rad/s.
We can find the linear velocity of the train, v , through its relationship to ω :

(10.36)v = rω = (0.350 m)(25.1 rad/s) = 8.77 m/s.

Discussion

The distance traveled is fairly large and the final velocity is fairly slow (just under 32 km/h).

There is translational motion even for something spinning in place, as the following example illustrates. Figure 10.9 shows a fly on the edge of a
rotating microwave oven plate. The example below calculates the total distance it travels.

Figure 10.9 The image shows a microwave plate. The fly makes revolutions while the food is heated (along with the fly).

Example 10.6 Calculating the Distance Traveled by a Fly on the Edge of a Microwave Oven Plate

A person decides to use a microwave oven to reheat some lunch. In the process, a fly accidentally flies into the microwave and lands on the
outer edge of the rotating plate and remains there. If the plate has a radius of 0.15 m and rotates at 6.0 rpm, calculate the total distance traveled
by the fly during a 2.0-min cooking period. (Ignore the start-up and slow-down times.)

Strategy

First, find the total number of revolutions θ , and then the linear distance x traveled. θ = ω̄ t can be used to find θ because ω- is given to be
6.0 rpm.

Solution

Entering known values into θ = ω̄ t gives
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(10.37)θ = ω- t = ⎛
⎝6.0 rpm⎞⎠(2.0 min) = 12 rev.

As always, it is necessary to convert revolutions to radians before calculating a linear quantity like x from an angular quantity like θ :

(10.38)θ = (12 rev)⎛⎝2π rad
1 rev

⎞
⎠ = 75.4 rad.

Now, using the relationship between x and θ , we can determine the distance traveled:

(10.39)x = rθ = (0.15 m)(75.4 rad) = 11 m.

Discussion

Quite a trip (if it survives)! Note that this distance is the total distance traveled by the fly. Displacement is actually zero for complete revolutions
because they bring the fly back to its original position. The distinction between total distance traveled and displacement was first noted in One-
Dimensional Kinematics.

Check Your Understanding

Rotational kinematics has many useful relationships, often expressed in equation form. Are these relationships laws of physics or are they simply
descriptive? (Hint: the same question applies to linear kinematics.)

Solution
Rotational kinematics (just like linear kinematics) is descriptive and does not represent laws of nature. With kinematics, we can describe many
things to great precision but kinematics does not consider causes. For example, a large angular acceleration describes a very rapid change in
angular velocity without any consideration of its cause.

10.3 Dynamics of Rotational Motion: Rotational Inertia
If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular velocity as seen in Figure 10.10.
In fact, your intuition is reliable in predicting many of the factors that are involved. For example, we know that a door opens slowly if we push too
close to its hinges. Furthermore, we know that the more massive the door, the more slowly it opens. The first example implies that the farther the
force is applied from the pivot, the greater the angular acceleration; another implication is that angular acceleration is inversely proportional to mass.
These relationships should seem very similar to the familiar relationships among force, mass, and acceleration embodied in Newton’s second law of
motion. There are, in fact, precise rotational analogs to both force and mass.

Figure 10.10 Force is required to spin the bike wheel. The greater the force, the greater the angular acceleration produced. The more massive the wheel, the smaller the
angular acceleration. If you push on a spoke closer to the axle, the angular acceleration will be smaller.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if we exert a force F on a point

mass m that is at a distance r from a pivot point, as shown in Figure 10.11. Because the force is perpendicular to r , an acceleration a = F
m is

obtained in the direction of F . We can rearrange this equation such that F = ma and then look for ways to relate this expression to expressions for

rotational quantities. We note that a = rα , and we substitute this expression into F = ma , yielding

(10.40)F = mrα.

Recall that torque is the turning effectiveness of a force. In this case, because F is perpendicular to r , torque is simply τ = Fr . So, if we multiply
both sides of the equation above by r , we get torque on the left-hand side. That is,

(10.41)rF = mr2α
or

(10.42)τ = mr2α.

This last equation is the rotational analog of Newton’s second law ( F = ma ), where torque is analogous to force, angular acceleration is analogous

to translational acceleration, and mr2 is analogous to mass (or inertia). The quantity mr2 is called the rotational inertia or moment of inertia of a
point mass m a distance r from the center of rotation.
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Figure 10.11 An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies centripetal force. A force F is applied to the object
perpendicular to the radius r , causing it to accelerate about the pivot point. The force is kept perpendicular to r .

Making Connections: Rotational Motion Dynamics

Dynamics for rotational motion is completely analogous to linear or translational dynamics. Dynamics is concerned with force and mass and their
effects on motion. For rotational motion, we will find direct analogs to force and mass that behave just as we would expect from our earlier
experiences.

Rotational Inertia and Moment of Inertia
Before we can consider the rotation of anything other than a point mass like the one in Figure 10.11, we must extend the idea of rotational inertia to

all types of objects. To expand our concept of rotational inertia, we define the moment of inertia I of an object to be the sum of mr2 for all the

point masses of which it is composed. That is, I = ∑ mr2 . Here I is analogous to m in translational motion. Because of the distance r , the

moment of inertia for any object depends on the chosen axis. Actually, calculating I is beyond the scope of this text except for one simple case—that

of a hoop, which has all its mass at the same distance from its axis. A hoop’s moment of inertia around its axis is therefore MR2 , where M is its

total mass and R its radius. (We use M and R for an entire object to distinguish them from m and r for point masses.) In all other cases, we

must consult Figure 10.12 (note that the table is piece of artwork that has shapes as well as formulae) for formulas for I that have been derived

from integration over the continuous body. Note that I has units of mass multiplied by distance squared ( kg ⋅ m2 ), as we might expect from its

definition.

The general relationship among torque, moment of inertia, and angular acceleration is

(10.43)net τ = Iα
or

(10.44)α = net τ
I ,

where net τ is the total torque from all forces relative to a chosen axis. For simplicity, we will only consider torques exerted by forces in the plane of

the rotation. Such torques are either positive or negative and add like ordinary numbers. The relationship in τ = Iα, α = net τ
I is the rotational

analog to Newton’s second law and is very generally applicable. This equation is actually valid for any torque, applied to any object, relative to any
axis.

As we might expect, the larger the torque is, the larger the angular acceleration is. For example, the harder a child pushes on a merry-go-round, the
faster it accelerates. Furthermore, the more massive a merry-go-round, the slower it accelerates for the same torque. The basic relationship between
moment of inertia and angular acceleration is that the larger the moment of inertia, the smaller is the angular acceleration. But there is an additional
twist. The moment of inertia depends not only on the mass of an object, but also on its distribution of mass relative to the axis around which it rotates.
For example, it will be much easier to accelerate a merry-go-round full of children if they stand close to its axis than if they all stand at the outer edge.
The mass is the same in both cases; but the moment of inertia is much larger when the children are at the edge.

Take-Home Experiment

Cut out a circle that has about a 10 cm radius from stiff cardboard. Near the edge of the circle, write numbers 1 to 12 like hours on a clock face.
Position the circle so that it can rotate freely about a horizontal axis through its center, like a wheel. (You could loosely nail the circle to a wall.)
Hold the circle stationary and with the number 12 positioned at the top, attach a lump of blue putty (sticky material used for fixing posters to
walls) at the number 3. How large does the lump need to be to just rotate the circle? Describe how you can change the moment of inertia of the
circle. How does this change affect the amount of blue putty needed at the number 3 to just rotate the circle? Change the circle’s moment of
inertia and then try rotating the circle by using different amounts of blue putty. Repeat this process several times.

Problem-Solving Strategy for Rotational Dynamics
1. Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch of the situation.

2. Determine the system of interest.

3. Draw a free body diagram. That is, draw and label all external forces acting on the system of interest.
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4. Apply net τ = Iα, α = net τ
I , the rotational equivalent of Newton’s second law, to solve the problem. Care must be taken to use the

correct moment of inertia and to consider the torque about the point of rotation.

5. As always, check the solution to see if it is reasonable.

Making Connections

In statics, the net torque is zero, and there is no angular acceleration. In rotational motion, net torque is the cause of angular acceleration,
exactly as in Newton’s second law of motion for rotation.

Figure 10.12 Some rotational inertias.

Example 10.7 Calculating the Effect of Mass Distribution on a Merry-Go-Round

Consider the father pushing a playground merry-go-round in Figure 10.13. He exerts a force of 250 N at the edge of the 50.0-kg merry-go-round,
which has a 1.50 m radius. Calculate the angular acceleration produced (a) when no one is on the merry-go-round and (b) when an 18.0-kg child
sits 1.25 m away from the center. Consider the merry-go-round itself to be a uniform disk with negligible retarding friction.
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Figure 10.13 A father pushes a playground merry-go-round at its edge and perpendicular to its radius to achieve maximum torque.

Strategy

Angular acceleration is given directly by the expression α = net τ
I :

(10.45)α = τ
I .

To solve for α , we must first calculate the torque τ (which is the same in both cases) and moment of inertia I (which is greater in the second
case). To find the torque, we note that the applied force is perpendicular to the radius and friction is negligible, so that

(10.46)τ = rF sin θ = (1.50 m)(250 N) = 375 N ⋅ m.

Solution for (a)

The moment of inertia of a solid disk about this axis is given in Figure 10.12 to be

(10.47)1
2MR2,

where M = 50.0 kg and R = 1.50 m , so that

(10.48)I = (0.500)(50.0 kg)(1.50 m)2 = 56.25 kg ⋅ m2.

Now, after we substitute the known values, we find the angular acceleration to be

(10.49)α = τ
I = 375 N ⋅ m

56.25 kg ⋅ m2 = 6.67rad
s2 .

Solution for (b)

We expect the angular acceleration for the system to be less in this part, because the moment of inertia is greater when the child is on the merry-
go-round. To find the total moment of inertia I , we first find the child’s moment of inertia Ic by considering the child to be equivalent to a point

mass at a distance of 1.25 m from the axis. Then,

(10.50)Ic = MR2 = (18.0 kg)(1.25 m)2 = 28.13 kg ⋅ m2.

The total moment of inertia is the sum of moments of inertia of the merry-go-round and the child (about the same axis). To justify this sum to
yourself, examine the definition of I :

(10.51)I = 28.13 kg ⋅ m2 + 56.25 kg ⋅ m2 = 84.38 kg ⋅ m2.

Substituting known values into the equation for α gives

(10.52)α = τ
I = 375 N ⋅ m

84.38 kg ⋅ m2 = 4.44rad
s2 .

Discussion

The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as expected. The angular
accelerations found are quite large, partly due to the fact that friction was considered to be negligible. If, for example, the father kept pushing
perpendicularly for 2.00 s, he would give the merry-go-round an angular velocity of 13.3 rad/s when it is empty but only 8.89 rad/s when the child
is on it. In terms of revolutions per second, these angular velocities are 2.12 rev/s and 1.41 rev/s, respectively. The father would end up running
at about 50 km/h in the first case. Summer Olympics, here he comes! Confirmation of these numbers is left as an exercise for the reader.

Check Your Understanding

Torque is the analog of force and moment of inertia is the analog of mass. Force and mass are physical quantities that depend on only one
factor. For example, mass is related solely to the numbers of atoms of various types in an object. Are torque and moment of inertia similarly
simple?

Solution
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No. Torque depends on three factors: force magnitude, force direction, and point of application. Moment of inertia depends on both mass and its
distribution relative to the axis of rotation. So, while the analogies are precise, these rotational quantities depend on more factors.

10.4 Rotational Kinetic Energy: Work and Energy Revisited
In this module, we will learn about work and energy associated with rotational motion. Figure 10.14 shows a worker using an electric grindstone
propelled by a motor. Sparks are flying, and noise and vibration are created as layers of steel are pared from the pole. The stone continues to turn
even after the motor is turned off, but it is eventually brought to a stop by friction. Clearly, the motor had to work to get the stone spinning. This work
went into heat, light, sound, vibration, and considerable rotational kinetic energy.

Figure 10.14 The motor works in spinning the grindstone, giving it rotational kinetic energy. That energy is then converted to heat, light, sound, and vibration. (credit: U.S. Navy
photo by Mass Communication Specialist Seaman Zachary David Bell)

Work must be done to rotate objects such as grindstones or merry-go-rounds. Work was defined in Uniform Circular Motion and Gravitation for
translational motion, and we can build on that knowledge when considering work done in rotational motion. The simplest rotational situation is one in
which the net force is exerted perpendicular to the radius of a disk (as shown in Figure 10.15) and remains perpendicular as the disk starts to rotate.
The force is parallel to the displacement, and so the net work done is the product of the force times the arc length traveled:

(10.53)net W = (net F)Δs.

To get torque and other rotational quantities into the equation, we multiply and divide the right-hand side of the equation by r , and gather terms:

(10.54)net W = (r net F)Δs
r .

We recognize that r net F = net τ and Δs / r = θ , so that

(10.55)net W = (net τ)θ.

This equation is the expression for rotational work. It is very similar to the familiar definition of translational work as force multiplied by distance. Here,
torque is analogous to force, and angle is analogous to distance. The equation net W = (net τ)θ is valid in general, even though it was derived for

a special case.

To get an expression for rotational kinetic energy, we must again perform some algebraic manipulations. The first step is to note that net τ = Iα , so
that

(10.56)net W = Iαθ.

Figure 10.15 The net force on this disk is kept perpendicular to its radius as the force causes the disk to rotate. The net work done is thus (net F)Δs . The net work goes

into rotational kinetic energy.

Making Connections

Work and energy in rotational motion are completely analogous to work and energy in translational motion, first presented in Uniform Circular
Motion and Gravitation.
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Now, we solve one of the rotational kinematics equations for αθ . We start with the equation

(10.57)ω2 = ω0
2 + 2αθ.

Next, we solve for αθ :

(10.58)
αθ = ω2 − ω0

2

2 .

Substituting this into the equation for net W and gathering terms yields

(10.59)net W = 1
2Iω2 − 1

2Iω0
2.

This equation is the work-energy theorem for rotational motion only. As you may recall, net work changes the kinetic energy of a system. Through

an analogy with translational motion, we define the term
⎛
⎝12
⎞
⎠Iω2 to be rotational kinetic energy KErot for an object with a moment of inertia I

and an angular velocity ω :

(10.60)KErot = 1
2Iω2.

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with I being analogous to m and ω to v .
Rotational kinetic energy has important effects. Flywheels, for example, can be used to store large amounts of rotational kinetic energy in a vehicle,
as seen in Figure 10.16.

Figure 10.16 Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large flywheel. When the bus goes down a hill, its
transmission converts its gravitational potential energy into KErot . It can also convert translational kinetic energy, when the bus stops, into KErot . The flywheel’s energy

can then be used to accelerate, to go up another hill, or to keep the bus from going against friction.

Example 10.8 Calculating the Work and Energy for Spinning a Grindstone

Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of a revolution as shown in
Figure 10.17. In this example, we verify that the work done by the torque she exerts equals the change in rotational energy. (a) How much work
is done if she exerts a force of 200 N through a rotation of 1.00 rad(57.3º) ? The force is kept perpendicular to the grindstone’s 0.320-m radius

at the point of application, and the effects of friction are negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg?
(c) What is the final rotational kinetic energy? (It should equal the work.)

Strategy

To find the work, we can use the equation net W = (net τ)θ . We have enough information to calculate the torque and are given the rotation

angle. In the second part, we can find the final angular velocity using one of the kinematic relationships. In the last part, we can calculate the

rotational kinetic energy from its expression in KErot = 1
2Iω2 .

Solution for (a)

The net work is expressed in the equation

(10.61)net W = (net τ)θ,

where net τ is the applied force multiplied by the radius (rF) because there is no retarding friction, and the force is perpendicular to r . The

angle θ is given. Substituting the given values in the equation above yields

(10.62)net W = rFθ = (0.320 m)(200 N)(1.00 rad)
= 64.0 N ⋅ m.

Noting that 1 N · m = 1 J ,

(10.63)net W = 64.0 J.
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Figure 10.17 A large grindstone is given a spin by a person grasping its outer edge.

Solution for (b)

To find ω from the given information requires more than one step. We start with the kinematic relationship in the equation

(10.64)ω2 = ω0
2 + 2αθ.

Note that ω0 = 0 because we start from rest. Taking the square root of the resulting equation gives

(10.65)ω = (2αθ)1 / 2.

Now we need to find α . One possibility is

(10.66)α = net τ
I ,

where the torque is

(10.67)net τ = rF = (0.320 m)(200 N) = 64.0 N ⋅ m.

The formula for the moment of inertia for a disk is found in Figure 10.12:

(10.68)I = 1
2MR2 = 0.5⎛⎝85.0 kg⎞⎠(0.320 m)2 = 4.352 kg ⋅ m2.

Substituting the values of torque and moment of inertia into the expression for α , we obtain

(10.69)α = 64.0 N ⋅ m
4.352 kg ⋅ m2 = 14.7rad

s2 .

Now, substitute this value and the given value for θ into the above expression for ω :

(10.70)
ω = (2αθ)1 / 2 = ⎡⎣2⎛⎝14.7rad

s2
⎞
⎠(1.00 rad)⎤⎦

1 / 2
= 5.42rad

s .

Solution for (c)

The final rotational kinetic energy is

(10.71)KErot = 1
2Iω2.

Both I and ω were found above. Thus,

(10.72)KErot = (0.5)⎛⎝4.352 kg ⋅ m2⎞⎠(5.42 rad/s)2 = 64.0 J.

Discussion

The final rotational kinetic energy equals the work done by the torque, which confirms that the work done went into rotational kinetic energy. We
could, in fact, have used an expression for energy instead of a kinematic relation to solve part (b). We will do this in later examples.

Helicopter pilots are quite familiar with rotational kinetic energy. They know, for example, that a point of no return will be reached if they allow their
blades to slow below a critical angular velocity during flight. The blades lose lift, and it is impossible to immediately get the blades spinning fast
enough to regain it. Rotational kinetic energy must be supplied to the blades to get them to rotate faster, and enough energy cannot be supplied in
time to avoid a crash. Because of weight limitations, helicopter engines are too small to supply both the energy needed for lift and to replenish the
rotational kinetic energy of the blades once they have slowed down. The rotational kinetic energy is put into them before takeoff and must not be
allowed to drop below this crucial level. One possible way to avoid a crash is to use the gravitational potential energy of the helicopter to replenish the
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rotational kinetic energy of the blades by losing altitude and aligning the blades so that the helicopter is spun up in the descent. Of course, if the
helicopter’s altitude is too low, then there is insufficient time for the blade to regain lift before reaching the ground.

Problem-Solving Strategy for Rotational Energy
1. Determine that energy or work is involved in the rotation.

2. Determine the system of interest. A sketch usually helps.

3. Analyze the situation to determine the types of work and energy involved.

4. For closed systems, mechanical energy is conserved. That is, KEi + PEi = KEf + PEf. Note that KEi and KEf may each include

translational and rotational contributions.

5. For open systems, mechanical energy may not be conserved, and other forms of energy (referred to previously as OE ), such as heat
transfer, may enter or leave the system. Determine what they are, and calculate them as necessary.

6. Eliminate terms wherever possible to simplify the algebra.

7. Check the answer to see if it is reasonable.

Example 10.9 Calculating Helicopter Energies

A typical small rescue helicopter, similar to the one in Figure 10.18, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades
can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of
1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the
helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all
of the rotational kinetic energy could be used to lift it?

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy
can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

The rotational kinetic energy is

(10.73)KErot = 1
2Iω2.

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find KErot . The angular velocity

ω is

(10.74)ω = 300 rev
1.00 min ⋅ 2π rad

1 rev ⋅ 1.00 min
60.0 s = 31.4rad

s .

The moment of inertia of one blade will be that of a thin rod rotated about its end, found in Figure 10.12. The total I is four times this moment of
inertia, because there are four blades. Thus,

(10.75)
I = 4Mℓ2

3 = 4×
⎛
⎝50.0 kg⎞⎠(4.00 m)2

3 = 1067 kg ⋅ m2.

Entering ω and I into the expression for rotational kinetic energy gives

(10.76)KErot = 0.5(1067 kg ⋅ m2)(31.4 rad/s)2

= 5.26×105 J
Solution for (b)

Translational kinetic energy was defined in Uniform Circular Motion and Gravitation. Entering the given values of mass and velocity, we obtain

(10.77)KEtrans = 1
2mv2 = (0.5)⎛⎝1000 kg⎞⎠(20.0 m/s)2 = 2.00×105 J.

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

(10.78)2.00×105 J
5.26×105 J

= 0.380.

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two
energies:

(10.79)KErot = PEgrav

or

(10.80)1
2Iω2 = mgh.
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We now solve for h and substitute known values into the resulting equation

(10.81)

h =
1
2Iω

2

mg = 5.26×105 J
⎛
⎝1000 kg⎞⎠⎛⎝9.80 m/s2⎞⎠

= 53.7 m.

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in
its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational
kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Figure 10.18 The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and
maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades. The second
image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water
rescue operation is shown. (credit: 111 Emergency, Flickr)

Making Connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of KE . Uniform Circular Motion and
Gravitation has a detailed treatment of conservation of energy.

How Thick Is the Soup? Or Why Don’t All Objects Roll Downhill at the Same Rate?
One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast, the soup is too thin. Why should
cans of identical size and mass roll down an incline at different rates? And why should the thickest soup roll the slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest. Each can starting from rest
means each starts with the same gravitational potential energy PEgrav , which is converted entirely to KE , provided each rolls without slipping.

KE , however, can take the form of KEtrans or KErot , and total KE is the sum of the two. If a can rolls down a ramp, it puts part of its energy into

rotation, leaving less for translation. Thus, the can goes slower than it would if it slid down. Furthermore, the thin soup does not rotate, whereas the
thick soup does, because it sticks to the can. The thick soup thus puts more of the can’s original gravitational potential energy into rotation than the
thin soup, and the can rolls more slowly, as seen in Figure 10.19.

Figure 10.19 Three cans of soup with identical masses race down an incline. The first can has a low friction coating and does not roll but just slides down the incline. It wins
because it converts its entire PE into translational KE. The second and third cans both roll down the incline without slipping. The second can contains thin soup and comes in
second because part of its initial PE goes into rotating the can (but not the thin soup). The third can contains thick soup. It comes in third because the soup rotates along with
the can, taking even more of the initial PE for rotational KE, leaving less for translational KE.
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Assuming no losses due to friction, there is only one force doing work—gravity. Therefore the total work done is the change in kinetic energy. As the
cans start moving, the potential energy is changing into kinetic energy. Conservation of energy gives

(10.82)PEi = KEf.

More specifically,

(10.83)PEgrav = KEtrans + KErot

or

(10.84)mgh = 1
2mv2 + 1

2Iω2.

So, the initial mgh is divided between translational kinetic energy and rotational kinetic energy; and the greater I is, the less energy goes into

translation. If the can slides down without friction, then ω = 0 and all the energy goes into translation; thus, the can goes faster.

Take-Home Experiment

Locate several cans each containing different types of food. First, predict which can will win the race down an inclined plane and explain why.
See if your prediction is correct. You could also do this experiment by collecting several empty cylindrical containers of the same size and filling
them with different materials such as wet or dry sand.

Example 10.10 Calculating the Speed of a Cylinder Rolling Down an Incline

Calculate the final speed of a solid cylinder that rolls down a 2.00-m-high incline. The cylinder starts from rest, has a mass of 0.750 kg, and has a
radius of 4.00 cm.

Strategy

We can solve for the final velocity using conservation of energy, but we must first express rotational quantities in terms of translational quantities
to end up with v as the only unknown.

Solution

Conservation of energy for this situation is written as described above:

(10.85)mgh = 1
2mv2 + 1

2Iω2.

Before we can solve for v , we must get an expression for I from Figure 10.12. Because v and ω are related (note here that the cylinder is

rolling without slipping), we must also substitute the relationship ω = v / R into the expression. These substitutions yield

(10.86)
mgh = 1

2mv2 + 1
2
⎛
⎝12mR2⎞⎠

⎛
⎝v

2

R2
⎞
⎠.

Interestingly, the cylinder’s radius R and mass m cancel, yielding

(10.87)gh = 1
2v2 + 1

4v2 = 3
4v2.

Solving algebraically, the equation for the final velocity v gives

(10.88)
v = ⎛⎝

4gh
3
⎞
⎠

1 / 2
.

Substituting known values into the resulting expression yields

(10.89)

v =
⎡
⎣
⎢4
⎛
⎝9.80 m/s2⎞⎠(2.00 m)

3

⎤
⎦
⎥

1 / 2

= 5.11 m/s.

Discussion

Because m and R cancel, the result v = ⎛⎝43gh⎞⎠
1 / 2

is valid for any solid cylinder, implying that all solid cylinders will roll down an incline at the

same rate independent of their masses and sizes. (Rolling cylinders down inclines is what Galileo actually did to show that objects fall at the
same rate independent of mass.) Note that if the cylinder slid without friction down the incline without rolling, then the entire gravitational potential

energy would go into translational kinetic energy. Thus, 1
2mv2 = mgh and v = (2gh)1 / 2 , which is 22% greater than (4gh / 3)1 / 2 . That is,

the cylinder would go faster at the bottom.

Check Your Understanding
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Analogy of Rotational and Translational Kinetic Energy

Is rotational kinetic energy completely analogous to translational kinetic energy? What, if any, are their differences? Give an example of each
type of kinetic energy.

Solution
Yes, rotational and translational kinetic energy are exact analogs. They both are the energy of motion involved with the coordinated (non-
random) movement of mass relative to some reference frame. The only difference between rotational and translational kinetic energy is that
translational is straight line motion while rotational is not. An example of both kinetic and translational kinetic energy is found in a bike tire while
being ridden down a bike path. The rotational motion of the tire means it has rotational kinetic energy while the movement of the bike along the
path means the tire also has translational kinetic energy. If you were to lift the front wheel of the bike and spin it while the bike is stationary, then
the wheel would have only rotational kinetic energy relative to the Earth.

PhET Explorations: My Solar System

Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and
masses of 2, 3, or 4 bodies, and then see them orbit each other.

Figure 10.20 My Solar System (http://cnx.org/content/m42180/1.8/my-solar-system_en.jar)

10.5 Angular Momentum and Its Conservation
Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to spin faster and faster simply by
pulling her arms in? Why does she not have to exert a torque to spin faster? Questions like these have answers based in angular momentum, the
rotational analog to linear momentum.

By now the pattern is clear—every rotational phenomenon has a direct translational analog. It seems quite reasonable, then, to define angular
momentum L as

(10.90)L = Iω.

This equation is an analog to the definition of linear momentum as p = mv . Units for linear momentum are kg ⋅ m/s while units for angular

momentum are kg ⋅ m2/s . As we would expect, an object that has a large moment of inertia I , such as Earth, has a very large angular momentum.

An object that has a large angular velocity ω , such as a centrifuge, also has a rather large angular momentum.

Making Connections

Angular momentum is completely analogous to linear momentum, first presented in Uniform Circular Motion and Gravitation. It has the same
implications in terms of carrying rotation forward, and it is conserved when the net external torque is zero. Angular momentum, like linear
momentum, is also a property of the atoms and subatomic particles.

Example 10.11 Calculating Angular Momentum of the Earth

Strategy

No information is given in the statement of the problem; so we must look up pertinent data before we can calculate L = Iω . First, according to
Figure 10.12, the formula for the moment of inertia of a sphere is

(10.91)
I = 2MR2

5
so that

(10.92)
L = Iω = 2MR2ω

5 .

Earth’s mass M is 5.979×1024 kg and its radius R is 6.376×106 m . The Earth’s angular velocity ω is, of course, exactly one revolution

per day, but we must covert ω to radians per second to do the calculation in SI units.

Solution

Substituting known information into the expression for L and converting ω to radians per second gives
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(10.93)
L = 0.4⎛⎝5.979×1024 kg⎞⎠

⎛
⎝6.376×106 m⎞⎠

2⎛
⎝1 rev

d
⎞
⎠

= 9.72×1037 kg ⋅ m2 ⋅ rev/d.

Substituting 2π rad for 1 rev and 8.64×104 s for 1 day gives

(10.94)
L = ⎛

⎝9.72×1037 kg ⋅ m2⎞⎠
⎛
⎝ 2π rad/rev

8.64×104 s/d
⎞
⎠(1 rev/d)

= 7.07×1033 kg ⋅ m2/s.

Discussion

This number is large, demonstrating that Earth, as expected, has a tremendous angular momentum. The answer is approximate, because we
have assumed a constant density for Earth in order to estimate its moment of inertia.

When you push a merry-go-round, spin a bike wheel, or open a door, you exert a torque. If the torque you exert is greater than opposing torques,
then the rotation accelerates, and angular momentum increases. The greater the net torque, the more rapid the increase in L . The relationship
between torque and angular momentum is

(10.95)net τ = ΔL
Δt .

This expression is exactly analogous to the relationship between force and linear momentum, F = Δp / Δt . The equation net τ = ΔL
Δt is very

fundamental and broadly applicable. It is, in fact, the rotational form of Newton’s second law.

Example 10.12 Calculating the Torque Putting Angular Momentum Into a Lazy Susan

Figure 10.21 shows a Lazy Susan food tray being rotated by a person in quest of sustenance. Suppose the person exerts a 2.50 N force
perpendicular to the lazy Susan’s 0.260-m radius for 0.150 s. (a) What is the final angular momentum of the lazy Susan if it starts from rest,
assuming friction is negligible? (b) What is the final angular velocity of the lazy Susan, given that its mass is 4.00 kg and assuming its moment of
inertia is that of a disk?

Figure 10.21 A partygoer exerts a torque on a lazy Susan to make it rotate. The equation net τ = ΔL
Δt gives the relationship between torque and the angular

momentum produced.

Strategy

We can find the angular momentum by solving net τ = ΔL
Δt for ΔL , and using the given information to calculate the torque. The final angular

momentum equals the change in angular momentum, because the lazy Susan starts from rest. That is, ΔL = L . To find the final velocity, we

must calculate ω from the definition of L in L = Iω .

Solution for (a)

Solving net τ = ΔL
Δt for ΔL gives

(10.96)ΔL = (net τ)Δt.

Because the force is perpendicular to r , we see that net τ = rF , so that

(10.97)L = rFΔt = (0.260 m)(2.50 N)(0.150 s)
= 9.75×10−2 kg ⋅ m2 / s.

Solution for (b)

The final angular velocity can be calculated from the definition of angular momentum,

(10.98)L = Iω.

CHAPTER 10 | ROTATIONAL MOTION AND ANGULAR MOMENTUM 341



Solving for ω and substituting the formula for the moment of inertia of a disk into the resulting equation gives

(10.99)ω = L
I = L

1
2MR2.

And substituting known values into the preceding equation yields

(10.100)
ω = 9.75×10−2 kg ⋅ m2/s

(0.500)⎛⎝4.00 kg⎞⎠(0.260 m) = 0.721 rad/s.

Discussion

Note that the imparted angular momentum does not depend on any property of the object but only on torque and time. The final angular velocity
is equivalent to one revolution in 8.71 s (determination of the time period is left as an exercise for the reader), which is about right for a lazy
Susan.

Example 10.13 Calculating the Torque in a Kick

The person whose leg is shown in Figure 10.22 kicks his leg by exerting a 2000-N force with his upper leg muscle. The effective perpendicular

lever arm is 2.20 cm. Given the moment of inertia of the lower leg is 1.25 kg ⋅ m2 , (a) find the angular acceleration of the leg. (b) Neglecting

the gravitational force, what is the rotational kinetic energy of the leg after it has rotated through 57.3º (1.00 rad)?

Figure 10.22 The muscle in the upper leg gives the lower leg an angular acceleration and imparts rotational kinetic energy to it by exerting a torque about the knee. F is
a vector that is perpendicular to r . This example examines the situation.

Strategy

The angular acceleration can be found using the rotational analog to Newton’s second law, or α = net τ / I . The moment of inertia I is given
and the torque can be found easily from the given force and perpendicular lever arm. Once the angular acceleration α is known, the final
angular velocity and rotational kinetic energy can be calculated.

Solution to (a)

From the rotational analog to Newton’s second law, the angular acceleration α is

(10.101)α = net τ
I .

Because the force and the perpendicular lever arm are given and the leg is vertical so that its weight does not create a torque, the net torque is
thus

(10.102)net τ = r⊥ F
= (0.0220 m)(2000 N)
= 44.0 N ⋅ m.

Substituting this value for the torque and the given value for the moment of inertia into the expression for α gives

(10.103)α = 44.0 N ⋅ m
1.25 kg ⋅ m2 = 35.2 rad/s2.

Solution to (b)

The final angular velocity can be calculated from the kinematic expression

(10.104)ω2 = ω0
2 + 2αθ

or

(10.105)ω2 = 2αθ
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because the initial angular velocity is zero. The kinetic energy of rotation is

(10.106)KErot = 1
2Iω2

so it is most convenient to use the value of ω2 just found and the given value for the moment of inertia. The kinetic energy is then

(10.107)KErot = 0.5⎛⎝1.25 kg ⋅ m2⎞⎠
⎛
⎝70.4 rad2 / s2⎞⎠

= 44.0 J
.

Discussion

These values are reasonable for a person kicking his leg starting from the position shown. The weight of the leg can be neglected in part (a)
because it exerts no torque when the center of gravity of the lower leg is directly beneath the pivot in the knee. In part (b), the force exerted by
the upper leg is so large that its torque is much greater than that created by the weight of the lower leg as it rotates. The rotational kinetic energy
given to the lower leg is enough that it could give a ball a significant velocity by transferring some of this energy in a kick.

Making Connections: Conservation Laws

Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of underlying unity in
physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum is conserved when the net external
force is zero.

Conservation of Angular Momentum

We can now understand why Earth keeps on spinning. As we saw in the previous example, ΔL = (net τ)Δt . This equation means that, to change

angular momentum, a torque must act over some period of time. Because Earth has a large angular momentum, a large torque acting over a long
time is needed to change its rate of spin. So what external torques are there? Tidal friction exerts torque that is slowing Earth’s rotation, but tens of
millions of years must pass before the change is very significant. Recent research indicates the length of the day was 18 h some 900 million years
ago. Only the tides exert significant retarding torques on Earth, and so it will continue to spin, although ever more slowly, for many billions of years.

What we have here is, in fact, another conservation law. If the net torque is zero, then angular momentum is constant or conserved. We can see this

rigorously by considering net τ = ΔL
Δt for the situation in which the net torque is zero. In that case,

(10.108)netτ = 0
implying that

(10.109)ΔL
Δt = 0.

If the change in angular momentum ΔL is zero, then the angular momentum is constant; thus,

(10.110)L = constant (net τ = 0)

or

(10.111)L = L′(netτ = 0).

These expressions are the law of conservation of angular momentum. Conservation laws are as scarce as they are important.

An example of conservation of angular momentum is seen in Figure 10.23, in which an ice skater is executing a spin. The net torque on her is very
close to zero, because there is relatively little friction between her skates and the ice and because the friction is exerted very close to the pivot point.
(Both F and r are small, and so τ is negligibly small.) Consequently, she can spin for quite some time. She can do something else, too. She can
increase her rate of spin by pulling her arms and legs in. Why does pulling her arms and legs in increase her rate of spin? The answer is that her
angular momentum is constant, so that

(10.112)L = L′.
Expressing this equation in terms of the moment of inertia,

(10.113)Iω = I′ω′,

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because I′ is smaller, the

angular velocity ω′ must increase to keep the angular momentum constant. The change can be dramatic, as the following example shows.
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Figure 10.23 (a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved because the net torque on her is negligibly
small. In the next image, her rate of spin increases greatly when she pulls in her arms, decreasing her moment of inertia. The work she does to pull in her arms results in an
increase in rotational kinetic energy.

Example 10.14 Calculating the Angular Momentum of a Spinning Skater

Suppose an ice skater, such as the one in Figure 10.23, is spinning at 0.800 rev/ s with her arms extended. She has a moment of inertia of

2.34 kg ⋅ m2 with her arms extended and of 0.363 kg ⋅ m2 with her arms close to her body. (These moments of inertia are based on

reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in revolutions per second after she pulls in her arms? (b) What
is her rotational kinetic energy before and after she does this?

Strategy

In the first part of the problem, we are looking for the skater’s angular velocity ω′ after she has pulled in her arms. To find this quantity, we use
the conservation of angular momentum and note that the moments of inertia and initial angular velocity are given. To find the initial and final
kinetic energies, we use the definition of rotational kinetic energy given by

(10.114)KErot = 1
2Iω2.

Solution for (a)

Because torque is negligible (as discussed above), the conservation of angular momentum given in Iω = I′ω′ is applicable. Thus,

(10.115)L = L′
or

(10.116)Iω = I′ω′

Solving for ω′ and substituting known values into the resulting equation gives

(10.117)
ω′ = I

I′ω =
⎛
⎝
⎜ 2.34 kg ⋅ m2

0.363 kg ⋅ m2

⎞
⎠
⎟(0.800 rev/s)

= 5.16 rev/s.
Solution for (b)

Rotational kinetic energy is given by

(10.118)KErot = 1
2Iω2.

The initial value is found by substituting known values into the equation and converting the angular velocity to rad/s:

(10.119)KErot = (0.5)⎛⎝2.34 kg ⋅ m2⎞⎠⎛⎝(0.800 rev/s)(2π rad/rev)⎞⎠2

= 29.6 J.
The final rotational kinetic energy is

(10.120)KErot ′ = 1
2I′ω′2.

Substituting known values into this equation gives

(10.121)KErot′ = (0.5)⎛⎝0.363 kg ⋅ m2⎞⎠⎡⎣(5.16 rev/s)(2π rad/rev)⎤⎦2

= 191 J.
Discussion

In both parts, there is an impressive increase. First, the final angular velocity is large, although most world-class skaters can achieve spin rates
about this great. Second, the final kinetic energy is much greater than the initial kinetic energy. The increase in rotational kinetic energy comes
from work done by the skater in pulling in her arms. This work is internal work that depletes some of the skater’s food energy.
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There are several other examples of objects that increase their rate of spin because something reduced their moment of inertia. Tornadoes are one
example. Storm systems that create tornadoes are slowly rotating. When the radius of rotation narrows, even in a local region, angular velocity
increases, sometimes to the furious level of a tornado. Earth is another example. Our planet was born from a huge cloud of gas and dust, the rotation
of which came from turbulence in an even larger cloud. Gravitational forces caused the cloud to contract, and the rotation rate increased as a result.
(See Figure 10.24.)

Figure 10.24 The Solar System coalesced from a cloud of gas and dust that was originally rotating. The orbital motions and spins of the planets are in the same direction as
the original spin and conserve the angular momentum of the parent cloud.

In case of human motion, one would not expect angular momentum to be conserved when a body interacts with the environment as its foot pushes
off the ground. Astronauts floating in space aboard the International Space Station have no angular momentum relative to the inside of the ship if they
are motionless. Their bodies will continue to have this zero value no matter how they twist about as long as they do not give themselves a push off
the side of the vessel.

Check Your Undestanding

Is angular momentum completely analogous to linear momentum? What, if any, are their differences?

Solution
Yes, angular and linear momentums are completely analogous. While they are exact analogs they have different units and are not directly inter-
convertible like forms of energy are.

10.6 Collisions of Extended Bodies in Two Dimensions
Bowling pins are sent flying and spinning when hit by a bowling ball—angular momentum as well as linear momentum and energy have been
imparted to the pins. (See Figure 10.25). Many collisions involve angular momentum. Cars, for example, may spin and collide on ice or a wet
surface. Baseball pitchers throw curves by putting spin on the baseball. A tennis player can put a lot of top spin on the tennis ball which causes it to
dive down onto the court once it crosses the net. We now take a brief look at what happens when objects that can rotate collide.

Consider the relatively simple collision shown in Figure 10.26, in which a disk strikes and adheres to an initially motionless stick nailed at one end to
a frictionless surface. After the collision, the two rotate about the nail. There is an unbalanced external force on the system at the nail. This force
exerts no torque because its lever arm r is zero. Angular momentum is therefore conserved in the collision. Kinetic energy is not conserved,
because the collision is inelastic. It is possible that momentum is not conserved either because the force at the nail may have a component in the
direction of the disk’s initial velocity. Let us examine a case of rotation in a collision in Example 10.15.

Figure 10.25 The bowling ball causes the pins to fly, some of them spinning violently. (credit: Tinou Bao, Flickr)
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Figure 10.26 (a) A disk slides toward a motionless stick on a frictionless surface. (b) The disk hits the stick at one end and adheres to it, and they rotate together, pivoting
around the nail. Angular momentum is conserved for this inelastic collision because the surface is frictionless and the unbalanced external force at the nail exerts no torque.

Example 10.15 Rotation in a Collision

Suppose the disk in Figure 10.26 has a mass of 50.0 g and an initial velocity of 30.0 m/s when it strikes the stick that is 1.20 m long and 2.00 kg.

(a) What is the angular velocity of the two after the collision?

(b) What is the kinetic energy before and after the collision?

(c) What is the total linear momentum before and after the collision?

Strategy for (a)

We can answer the first question using conservation of angular momentum as noted. Because angular momentum is Iω , we can solve for
angular velocity.

Solution for (a)

Conservation of angular momentum states

(10.122)L = L′,

where primed quantities stand for conditions after the collision and both momenta are calculated relative to the pivot point. The initial angular
momentum of the system of stick-disk is that of the disk just before it strikes the stick. That is,

(10.123)L = Iω,

where I is the moment of inertia of the disk and ω is its angular velocity around the pivot point. Now, I = mr2 (taking the disk to be

approximately a point mass) and ω = v / r , so that

(10.124)L = mr2v
r = mvr.

After the collision,

(10.125)L′ = I′ω′.
It is ω′ that we wish to find. Conservation of angular momentum gives

(10.126)I′ω′ = mvr.
Rearranging the equation yields

(10.127)ω′ = mvr
I′ ,

where I′ is the moment of inertia of the stick and disk stuck together, which is the sum of their individual moments of inertia about the nail.

Figure 10.12 gives the formula for a rod rotating around one end to be I = Mr2 / 3 . Thus,

(10.128)
I′ = mr2 + Mr2

3 = ⎛⎝m + M
3
⎞
⎠r2.

Entering known values in this equation yields,

(10.129)I′ = ⎛
⎝0.0500 kg + 0.667 kg⎞⎠(1.20 m)2 = 1.032 kg ⋅ m2.

The value of I′ is now entered into the expression for ω′ , which yields

(10.130)
ω′ = mvr

I′ =
⎛
⎝0.0500 kg⎞⎠(30.0 m/s)(1.20 m)

1.032 kg ⋅ m2

= 1.744 rad/s ≈ 1.74 rad/s.
Strategy for (b)

The kinetic energy before the collision is the incoming disk’s translational kinetic energy, and after the collision, it is the rotational kinetic energy
of the two stuck together.

Solution for (b)
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First, we calculate the translational kinetic energy by entering given values for the mass and speed of the incoming disk.

(10.131)KE = 1
2mv2 = (0.500)⎛⎝0.0500 kg⎞⎠(30.0 m/s)2 = 22.5 J

After the collision, the rotational kinetic energy can be found because we now know the final angular velocity and the final moment of inertia.
Thus, entering the values into the rotational kinetic energy equation gives

(10.132)
KE′ = 1

2I′ω′2 = (0.5)⎛⎝1.032 kg ⋅ m2⎞⎠
⎛
⎝1.744rad

s
⎞
⎠
2

= 1.57 J.
Strategy for (c)

The linear momentum before the collision is that of the disk. After the collision, it is the sum of the disk’s momentum and that of the center of
mass of the stick.

Solution of (c)

Before the collision, then, linear momentum is

(10.133)p = mv = ⎛
⎝0.0500 kg⎞⎠(30.0 m/s) = 1.50 kg ⋅ m/s.

After the collision, the disk and the stick’s center of mass move in the same direction. The total linear momentum is that of the disk moving at a
new velocity v′ = rω′ plus that of the stick’s center of mass,

which moves at half this speed because vCM = ⎛⎝r2
⎞
⎠ω′ = v′

2 . Thus,

(10.134)p′ = mv′ + MvCM = mv′ + Mv′
2 .

Gathering similar terms in the equation yields,

(10.135)p′ = ⎛⎝m + M
2
⎞
⎠v′

so that

(10.136)p′ = ⎛⎝m + M
2
⎞
⎠rω′.

Substituting known values into the equation,

(10.137)p′ = ⎛
⎝1.050 kg⎞⎠(1.20 m)(1.744 rad/s) = 2.20 kg ⋅ m/s.

Discussion

First note that the kinetic energy is less after the collision, as predicted, because the collision is inelastic. More surprising is that the momentum
after the collision is actually greater than before the collision. This result can be understood if you consider how the nail affects the stick and vice
versa. Apparently, the stick pushes backward on the nail when first struck by the disk. The nail’s reaction (consistent with Newton’s third law) is to
push forward on the stick, imparting momentum to it in the same direction in which the disk was initially moving, thereby increasing the
momentum of the system.

The above example has other implications. For example, what would happen if the disk hit very close to the nail? Obviously, a force would be exerted
on the nail in the forward direction. So, when the stick is struck at the end farthest from the nail, a backward force is exerted on the nail, and when it is
hit at the end nearest the nail, a forward force is exerted on the nail. Thus, striking it at a certain point in between produces no force on the nail. This
intermediate point is known as the percussion point.

An analogous situation occurs in tennis as seen in Figure 10.27. If you hit a ball with the end of your racquet, the handle is pulled away from your
hand. If you hit a ball much farther down, for example, on the shaft of the racquet, the handle is pushed into your palm. And if you hit the ball at the
racquet’s percussion point (what some people call the “sweet spot”), then little or no force is exerted on your hand, and there is less vibration,
reducing chances of a tennis elbow. The same effect occurs for a baseball bat.
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Figure 10.27 A disk hitting a stick is compared to a tennis ball being hit by a racquet. (a) When the ball strikes the racquet near the end, a backward force is exerted on the
hand. (b) When the racquet is struck much farther down, a forward force is exerted on the hand. (c) When the racquet is struck at the percussion point, no force is delivered to
the hand.

Check Your Understanding

Is rotational kinetic energy a vector? Justify your answer.

Solution
No, energy is always scalar whether motion is involved or not. No form of energy has a direction in space and you can see that rotational kinetic
energy does not depend on the direction of motion just as linear kinetic energy is independent of the direction of motion.

10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
Angular momentum is a vector and, therefore, has direction as well as magnitude. Torque affects both the direction and the magnitude of angular
momentum. What is the direction of the angular momentum of a rotating object like the disk in Figure 10.28? The figure shows the right-hand rule
used to find the direction of both angular momentum and angular velocity. Both L and ω are vectors—each has direction and magnitude. Both can
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be represented by arrows. The right-hand rule defines both to be perpendicular to the plane of rotation in the direction shown. Because angular
momentum is related to angular velocity by L = Iω , the direction of L is the same as the direction of ω . Notice in the figure that both point along
the axis of rotation.

Figure 10.28 Figure (a) shows a disk is rotating counterclockwise when viewed from above. Figure (b) shows the right-hand rule. The direction of angular velocity ω size and

angular momentum L are defined to be the direction in which the thumb of your right hand points when you curl your fingers in the direction of the disk’s rotation as shown.

Now, recall that torque changes angular momentum as expressed by

(10.138)net τ = ΔL
Δt .

This equation means that the direction of ΔL is the same as the direction of the torque τ that creates it. This result is illustrated in Figure 10.29,
which shows the direction of torque and the angular momentum it creates.

Let us now consider a bicycle wheel with a couple of handles attached to it, as shown in Figure 10.30. (This device is popular in demonstrations
among physicists, because it does unexpected things.) With the wheel rotating as shown, its angular momentum is to the woman's left. Suppose the
person holding the wheel tries to rotate it as in the figure. Her natural expectation is that the wheel will rotate in the direction she pushes it—but what
happens is quite different. The forces exerted create a torque that is horizontal toward the person, as shown in Figure 10.30(a). This torque creates a
change in angular momentum L in the same direction, perpendicular to the original angular momentum L , thus changing the direction of L but

not the magnitude of L . Figure 10.30 shows how ΔL and L add, giving a new angular momentum with direction that is inclined more toward the
person than before. The axis of the wheel has thus moved perpendicular to the forces exerted on it, instead of in the expected direction.

Figure 10.29 In figure (a), the torque is perpendicular to the plane formed by r and F and is the direction your right thumb would point to if you curled your fingers in the

direction of F . Figure (b) shows that the direction of the torque is the same as that of the angular momentum it produces.
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angular acceleration:

Figure 10.30 In figure (a), a person holding the spinning bike wheel lifts it with her right hand and pushes down with her left hand in an attempt to rotate the wheel. This action
creates a torque directly toward her. This torque causes a change in angular momentum ΔL in exactly the same direction. Figure (b) shows a vector diagram depicting how

ΔL and L add, producing a new angular momentum pointing more toward the person. The wheel moves toward the person, perpendicular to the forces she exerts on it.

This same logic explains the behavior of gyroscopes. Figure 10.31 shows the two forces acting on a spinning gyroscope. The torque produced is
perpendicular to the angular momentum, thus the direction of the torque is changed, but not its magnitude. The gyroscope precesses around a
vertical axis, since the torque is always horizontal and perpendicular to L . If the gyroscope is not spinning, it acquires angular momentum in the

direction of the torque ( L = ΔL ), and it rotates around a horizontal axis, falling over just as we would expect.

Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and points at Polaris, the North Star. But Earth is slowly precessing
(once in about 26,000 years) due to the torque of the Sun and the Moon on its nonspherical shape.

Figure 10.31 As seen in figure (a), the forces on a spinning gyroscope are its weight and the supporting force from the stand. These forces create a horizontal torque on the
gyroscope, which create a change in angular momentum ΔL that is also horizontal. In figure (b), ΔL and L add to produce a new angular momentum with the same
magnitude, but different direction, so that the gyroscope precesses in the direction shown instead of falling over.

Check Your Understanding

Rotational kinetic energy is associated with angular momentum? Does that mean that rotational kinetic energy is a vector?

Solution
No, energy is always a scalar whether motion is involved or not. No form of energy has a direction in space and you can see that rotational
kinetic energy does not depend on the direction of motion just as linear kinetic energy is independent of the direction of motion.

Glossary
the rate of change of angular velocity with time
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angular momentum:

change in angular velocity:

kinematics of rotational motion:

law of conservation of angular momentum:

moment of inertia:

right-hand rule:

rotational inertia:

rotational kinetic energy:

tangential acceleration:

torque:

work-energy theorem:

the product of moment of inertia and angular velocity

the difference between final and initial values of angular velocity

describes the relationships among rotation angle, angular velocity, angular acceleration, and time

angular momentum is conserved, i.e., the initial angular momentum is equal to the final angular
momentum when no external torque is applied to the system

mass times the square of perpendicular distance from the rotation axis; for a point mass, it is I = mr2 and, because any
object can be built up from a collection of point masses, this relationship is the basis for all other moments of inertia

direction of angular velocity ω and angular momentum L in which the thumb of your right hand points when you curl your fingers
in the direction of the disk’s rotation

resistance to change of rotation. The more rotational inertia an object has, the harder it is to rotate

the kinetic energy due to the rotation of an object. This is part of its total kinetic energy

the acceleration in a direction tangent to the circle at the point of interest in circular motion

the turning effectiveness of a force

if one or more external forces act upon a rigid object, causing its kinetic energy to change from KE1 to KE2 , then the

work W done by the net force is equal to the change in kinetic energy

Section Summary

10.1 Angular Acceleration
• Uniform circular motion is the motion with a constant angular velocity ω = Δθ

Δt .

• In non-uniform circular motion, the velocity changes with time and the rate of change of angular velocity (i.e. angular acceleration) is α = Δω
Δt .

• Linear or tangential acceleration refers to changes in the magnitude of velocity but not its direction, given as at = Δv
Δt .

• For circular motion, note that v = rω , so that

at = Δ(rω)
Δt .

• The radius r is constant for circular motion, and so Δ(rω) = rΔω . Thus,

at = rΔω
Δt .

• By definition, Δω / Δt = α . Thus,
at = rα

or

α = at
r .

10.2 Kinematics of Rotational Motion
• Kinematics is the description of motion.

• The kinematics of rotational motion describes the relationships among rotation angle, angular velocity, angular acceleration, and time.

• Starting with the four kinematic equations we developed in the One-Dimensional Kinematics, we can derive the four rotational kinematic
equations (presented together with their translational counterparts) seen in Table 10.2.

• In these equations, the subscript 0 denotes initial values ( x0 and t0 are initial values), and the average angular velocity ω- and average

velocity v- are defined as follows:

ω̄ = ω0 + ω
2  and v̄ = v0 + v

2 .

10.3 Dynamics of Rotational Motion: Rotational Inertia
• The farther the force is applied from the pivot, the greater is the angular acceleration; angular acceleration is inversely proportional to mass.

• If we exert a force F on a point mass m that is at a distance r from a pivot point and because the force is perpendicular to r , an

acceleration a = F/m is obtained in the direction of F . We can rearrange this equation such that

F = ma,
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and then look for ways to relate this expression to expressions for rotational quantities. We note that a = rα , and we substitute this expression

into F=ma , yielding

F=mrα
• Torque is the turning effectiveness of a force. In this case, because F is perpendicular to r , torque is simply τ = rF . If we multiply both sides

of the equation above by r , we get torque on the left-hand side. That is,

rF = mr2α
or

τ = mr2α.
• The moment of inertia I of an object is the sum of MR2 for all the point masses of which it is composed. That is,

I = ∑ mr2.
• The general relationship among torque, moment of inertia, and angular acceleration is

τ = Iα
or

α = net τ
I ⋅

10.4 Rotational Kinetic Energy: Work and Energy Revisited
• The rotational kinetic energy KErot for an object with a moment of inertia I and an angular velocity ω is given by

KErot = 1
2Iω2.

• Helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and
maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy
into the blades.

• Work and energy in rotational motion are completely analogous to work and energy in translational motion.

• The equation for the work-energy theorem for rotational motion is,

net W = 1
2Iω2 − 1

2Iω0
2.

10.5 Angular Momentum and Its Conservation
• Every rotational phenomenon has a direct translational analog , likewise angular momentum L can be defined as L = Iω.
• This equation is an analog to the definition of linear momentum as p = mv . The relationship between torque and angular momentum is

net τ = ΔL
Δt .

• Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of underlying unity in
physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum is conserved when the net external
force is zero.

10.6 Collisions of Extended Bodies in Two Dimensions
• Angular momentum L is analogous to linear momentum and is given by L = Iω .

• Angular momentum is changed by torque, following the relationship net τ = ΔL
Δt .

• Angular momentum is conserved if the net torque is zero L = constant (net τ = 0) or L = L′ (net τ = 0) . This equation is known as the

law of conservation of angular momentum, which may be conserved in collisions.

10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
• Torque is perpendicular to the plane formed by r and F and is the direction your right thumb would point if you curled the fingers of your right

hand in the direction of F . The direction of the torque is thus the same as that of the angular momentum it produces.

• The gyroscope precesses around a vertical axis, since the torque is always horizontal and perpendicular to L . If the gyroscope is not spinning,

it acquires angular momentum in the direction of the torque ( L = ΔL ), and it rotates about a horizontal axis, falling over just as we would
expect.

• Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and points at Polaris, the North Star.

Conceptual Questions

10.1 Angular Acceleration
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1. Analogies exist between rotational and translational physical quantities. Identify the rotational term analogous to each of the following: acceleration,
force, mass, work, translational kinetic energy, linear momentum, impulse.

2. Explain why centripetal acceleration changes the direction of velocity in circular motion but not its magnitude.

3. In circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction. Explain your answer.

4. Suppose a piece of food is on the edge of a rotating microwave oven plate. Does it experience nonzero tangential acceleration, centripetal
acceleration, or both when: (a) The plate starts to spin? (b) The plate rotates at constant angular velocity? (c) The plate slows to a halt?

10.3 Dynamics of Rotational Motion: Rotational Inertia

5. The moment of inertia of a long rod spun around an axis through one end perpendicular to its length is ML2 /3 . Why is this moment of inertia

greater than it would be if you spun a point mass M at the location of the center of mass of the rod (at L / 2 )? (That would be ML2 /4 .)

6. Why is the moment of inertia of a hoop that has a mass M and a radius R greater than the moment of inertia of a disk that has the same mass

and radius? Why is the moment of inertia of a spherical shell that has a mass M and a radius R greater than that of a solid sphere that has the
same mass and radius?

7. Give an example in which a small force exerts a large torque. Give another example in which a large force exerts a small torque.

8. While reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel rims. Why does this allow a
racer to achieve greater accelerations than would an identical reduction in the mass of the bicycle’s frame?

Figure 10.32 The image shows a side view of a racing bicycle. Can you see evidence in the design of the wheels on this racing bicycle that their moment of inertia has been
purposely reduced? (credit: Jesús Rodriguez)

9. A ball slides up a frictionless ramp. It is then rolled without slipping and with the same initial velocity up another frictionless ramp (with the same
slope angle). In which case does it reach a greater height, and why?

10.4 Rotational Kinetic Energy: Work and Energy Revisited
10. Describe the energy transformations involved when a yo-yo is thrown downward and then climbs back up its string to be caught in the user’s
hand.

11. What energy transformations are involved when a dragster engine is revved, its clutch let out rapidly, its tires spun, and it starts to accelerate
forward? Describe the source and transformation of energy at each step.

12. The Earth has more rotational kinetic energy now than did the cloud of gas and dust from which it formed. Where did this energy come from?

Figure 10.33 An immense cloud of rotating gas and dust contracted under the influence of gravity to form the Earth and in the process rotational kinetic energy increased.
(credit: NASA)

10.5 Angular Momentum and Its Conservation
13. When you start the engine of your car with the transmission in neutral, you notice that the car rocks in the opposite sense of the engine’s rotation.
Explain in terms of conservation of angular momentum. Is the angular momentum of the car conserved for long (for more than a few seconds)?

14. Suppose a child walks from the outer edge of a rotating merry-go round to the inside. Does the angular velocity of the merry-go-round increase,
decrease, or remain the same? Explain your answer.
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Figure 10.34 A child may jump off a merry-go-round in a variety of directions.

15. Suppose a child gets off a rotating merry-go-round. Does the angular velocity of the merry-go-round increase, decrease, or remain the same if:
(a) He jumps off radially? (b) He jumps backward to land motionless? (c) He jumps straight up and hangs onto an overhead tree branch? (d) He
jumps off forward, tangential to the edge? Explain your answers. (Refer to Figure 10.34).

16. Helicopters have a small propeller on their tail to keep them from rotating in the opposite direction of their main lifting blades. Explain in terms of
Newton’s third law why the helicopter body rotates in the opposite direction to the blades.

17. Whenever a helicopter has two sets of lifting blades, they rotate in opposite directions (and there will be no tail propeller). Explain why it is best to
have the blades rotate in opposite directions.

18. Describe how work is done by a skater pulling in her arms during a spin. In particular, identify the force she exerts on each arm to pull it in and the
distance each moves, noting that a component of the force is in the direction moved. Why is angular momentum not increased by this action?

19. When there is a global heating trend on Earth, the atmosphere expands and the length of the day increases very slightly. Explain why the length
of a day increases.

20. Nearly all conventional piston engines have flywheels on them to smooth out engine vibrations caused by the thrust of individual piston firings.
Why does the flywheel have this effect?

21. Jet turbines spin rapidly. They are designed to fly apart if something makes them seize suddenly, rather than transfer angular momentum to the
plane’s wing, possibly tearing it off. Explain how flying apart conserves angular momentum without transferring it to the wing.

22. An astronaut tightens a bolt on a satellite in orbit. He rotates in a direction opposite to that of the bolt, and the satellite rotates in the same
direction as the bolt. Explain why. If a handhold is available on the satellite, can this counter-rotation be prevented? Explain your answer.

23. Competitive divers pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they fully extend their limbs to
enter straight down. Explain the effect of both actions on their angular velocities. Also explain the effect on their angular momenta.

Figure 10.35 The diver spins rapidly when curled up and slows when she extends her limbs before entering the water.

24. Draw a free body diagram to show how a diver gains angular momentum when leaving the diving board.

25. In terms of angular momentum, what is the advantage of giving a football or a rifle bullet a spin when throwing or releasing it?
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Figure 10.36 The image shows a view down the barrel of a cannon, emphasizing its rifling. Rifling in the barrel of a canon causes the projectile to spin just as is the case for
rifles (hence the name for the grooves in the barrel). (credit: Elsie esq., Flickr)

10.6 Collisions of Extended Bodies in Two Dimensions
26. Describe two different collisions—one in which angular momentum is conserved, and the other in which it is not. Which condition determines
whether or not angular momentum is conserved in a collision?

27. Suppose an ice hockey puck strikes a hockey stick that lies flat on the ice and is free to move in any direction. Which quantities are likely to be
conserved: angular momentum, linear momentum, or kinetic energy (assuming the puck and stick are very resilient)?

28. While driving his motorcycle at highway speed, a physics student notices that pulling back lightly on the right handlebar tips the cycle to the left
and produces a left turn. Explain why this happens.

10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
29. While driving his motorcycle at highway speed, a physics student notices that pulling back lightly on the right handlebar tips the cycle to the left
and produces a left turn. Explain why this happens.

30. Gyroscopes used in guidance systems to indicate directions in space must have an angular momentum that does not change in direction. Yet
they are often subjected to large forces and accelerations. How can the direction of their angular momentum be constant when they are accelerated?

CHAPTER 10 | ROTATIONAL MOTION AND ANGULAR MOMENTUM 355



Problems & Exercises

10.1 Angular Acceleration
31. At its peak, a tornado is 60.0 m in diameter and carries 500 km/h
winds. What is its angular velocity in revolutions per second?

32. Integrated Concepts

An ultracentrifuge accelerates from rest to 100,000 rpm in 2.00 min. (a)

What is its angular acceleration in rad/s2 ? (b) What is the tangential
acceleration of a point 9.50 cm from the axis of rotation? (c) What is the

radial acceleration in m/s2 and multiples of g of this point at full rpm?

33. Integrated Concepts

You have a grindstone (a disk) that is 90.0 kg, has a 0.340-m radius, and
is turning at 90.0 rpm, and you press a steel axe against it with a radial
force of 20.0 N. (a) Assuming the kinetic coefficient of friction between
steel and stone is 0.20, calculate the angular acceleration of the
grindstone. (b) How many turns will the stone make before coming to
rest?

34. Unreasonable Results

You are told that a basketball player spins the ball with an angular

acceleration of 100 rad/s2 . (a) What is the ball’s final angular velocity if
the ball starts from rest and the acceleration lasts 2.00 s? (b) What is
unreasonable about the result? (c) Which premises are unreasonable or
inconsistent?

10.2 Kinematics of Rotational Motion
35. With the aid of a string, a gyroscope is accelerated from rest to 32
rad/s in 0.40 s.

(a) What is its angular acceleration in rad/s2?

(b) How many revolutions does it go through in the process?

36. Suppose a piece of dust finds itself on a CD. If the spin rate of the CD
is 500 rpm, and the piece of dust is 4.3 cm from the center, what is the
total distance traveled by the dust in 3 minutes? (Ignore accelerations
due to getting the CD rotating.)

37. A gyroscope slows from an initial rate of 32.0 rad/s at a rate of

0.700 rad/s2 .

(a) How long does it take to come to rest?

(b) How many revolutions does it make before stopping?

38. During a very quick stop, a car decelerates at 7.00 m/s2 .

(a) What is the angular acceleration of its 0.280-m-radius tires, assuming
they do not slip on the pavement?

(b) How many revolutions do the tires make before coming to rest, given
their initial angular velocity is 95.0 rad/s ?

(c) How long does the car take to stop completely?

(d) What distance does the car travel in this time?

(e) What was the car’s initial velocity?

(f) Do the values obtained seem reasonable, considering that this stop
happens very quickly?

Figure 10.37 Yo-yos are amusing toys that display significant physics and are
engineered to enhance performance based on physical laws. (credit: Beyond Neon,
Flickr)

39. Everyday application: Suppose a yo-yo has a center shaft that has a
0.250 cm radius and that its string is being pulled.

(a) If the string is stationary and the yo-yo accelerates away from it at a

rate of 1.50 m/s2 , what is the angular acceleration of the yo-yo?

(b) What is the angular velocity after 0.750 s if it starts from rest?

(c) The outside radius of the yo-yo is 3.50 cm. What is the tangential
acceleration of a point on its edge?

10.3 Dynamics of Rotational Motion: Rotational Inertia
40. This problem considers additional aspects of example Calculating
the Effect of Mass Distribution on a Merry-Go-Round. (a) How long
does it take the father to give the merry-go-round an angular velocity of
1.50 rad/s? (b) How many revolutions must he go through to generate
this velocity? (c) If he exerts a slowing force of 300 N at a radius of 1.35
m, how long would it take him to stop them?

41. Calculate the moment of inertia of a skater given the following
information. (a) The 60.0-kg skater is approximated as a cylinder that has
a 0.110-m radius. (b) The skater with arms extended is approximately a
cylinder that is 52.5 kg, has a 0.110-m radius, and has two 0.900-m-long
arms which are 3.75 kg each and extend straight out from the cylinder
like rods rotated about their ends.

42. The triceps muscle in the back of the upper arm extends the forearm.

This muscle in a professional boxer exerts a force of 2.00×103 N with
an effective perpendicular lever arm of 3.00 cm, producing an angular

acceleration of the forearm of 120 rad/s2 . What is the moment of inertia
of the boxer’s forearm?

43. A soccer player extends her lower leg in a kicking motion by exerting
a force with the muscle above the knee in the front of her leg. She

produces an angular acceleration of 30.00 rad/s2 and her lower leg has

a moment of inertia of 0.750 kg ⋅ m2 . What is the force exerted by the

muscle if its effective perpendicular lever arm is 1.90 cm?

44. Suppose you exert a force of 180 N tangential to a 0.280-m-radius
75.0-kg grindstone (a solid disk).

(a)What torque is exerted? (b) What is the angular acceleration assuming
negligible opposing friction? (c) What is the angular acceleration if there
is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

45. Consider the 12.0 kg motorcycle wheel shown in Figure 10.38.
Assume it to be approximately an annular ring with an inner radius of
0.280 m and an outer radius of 0.330 m. The motorcycle is on its center
stand, so that the wheel can spin freely. (a) If the drive chain exerts a
force of 2200 N at a radius of 5.00 cm, what is the angular acceleration of
the wheel? (b) What is the tangential acceleration of a point on the outer
edge of the tire? (c) How long, starting from rest, does it take to reach an
angular velocity of 80.0 rad/s?
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Figure 10.38 A motorcycle wheel has a moment of inertia approximately that of an
annular ring.

46. Zorch, an archenemy of Superman, decides to slow Earth’s rotation
to once per 28.0 h by exerting an opposing force at and parallel to the
equator. Superman is not immediately concerned, because he knows

Zorch can only exert a force of 4.00×107 N (a little greater than a
Saturn V rocket’s thrust). How long must Zorch push with this force to
accomplish his goal? (This period gives Superman time to devote to
other villains.) Explicitly show how you follow the steps found in
Problem-Solving Strategy for Rotational Dynamics.

47. An automobile engine can produce 200 N · m of torque. Calculate the
angular acceleration produced if 95.0% of this torque is applied to the
drive shaft, axle, and rear wheels of a car, given the following information.
The car is suspended so that the wheels can turn freely. Each wheel acts
like a 15.0 kg disk that has a 0.180 m radius. The walls of each tire act
like a 2.00-kg annular ring that has inside radius of 0.180 m and outside
radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of
radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm
radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.

48. Starting with the formula for the moment of inertia of a rod rotated
around an axis through one end perpendicular to its length
⎛
⎝I = Mℓ  2 / 3⎞⎠ , prove that the moment of inertia of a rod rotated about

an axis through its center perpendicular to its length is I = Mℓ  2 / 12 .
You will find the graphics in Figure 10.12 useful in visualizing these
rotations.

49. Unreasonable Results

A gymnast doing a forward flip lands on the mat and exerts a 500-N · m
torque to slow and then reverse her angular velocity. Her initial angular

velocity is 10.0 rad/s, and her moment of inertia is 0.050 kg ⋅ m2 . (a)

What time is required for her to exactly reverse her spin? (b) What is
unreasonable about the result? (c) Which premises are unreasonable or
inconsistent?

50. Unreasonable Results

An advertisement claims that an 800-kg car is aided by its 20.0-kg
flywheel, which can accelerate the car from rest to a speed of 30.0 m/s.
The flywheel is a disk with a 0.150-m radius. (a) Calculate the angular
velocity the flywheel must have if 95.0% of its rotational energy is used to
get the car up to speed. (b) What is unreasonable about the result? (c)
Which premise is unreasonable or which premises are inconsistent?

10.4 Rotational Kinetic Energy: Work and Energy
Revisited
51. This problem considers energy and work aspects of Example
10.7—use data from that example as needed. (a) Calculate the rotational
kinetic energy in the merry-go-round plus child when they have an
angular velocity of 20.0 rpm. (b) Using energy considerations, find the
number of revolutions the father will have to push to achieve this angular

velocity starting from rest. (c) Again, using energy considerations,
calculate the force the father must exert to stop the merry-go-round in
two revolutions

52. What is the final velocity of a hoop that rolls without slipping down a
5.00-m-high hill, starting from rest?

53. (a) Calculate the rotational kinetic energy of Earth on its axis. (b)
What is the rotational kinetic energy of Earth in its orbit around the Sun?

54. Calculate the rotational kinetic energy in the motorcycle wheel
(Figure 10.38) if its angular velocity is 120 rad/s. Assume M = 12.0 kg,
R1 = 0.280 m, and R2 = 0.330 m.

55. A baseball pitcher throws the ball in a motion where there is rotation
of the forearm about the elbow joint as well as other movements. If the
linear velocity of the ball relative to the elbow joint is 20.0 m/s at a
distance of 0.480 m from the joint and the moment of inertia of the

forearm is 0.500 kg ⋅ m2 , what is the rotational kinetic energy of the

forearm?

56. While punting a football, a kicker rotates his leg about the hip joint.

The moment of inertia of the leg is 3.75 kg ⋅ m2 and its rotational

kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b)
What is the velocity of tip of the punter’s shoe if it is 1.05 m from the hip
joint? (c) Explain how the football can be given a velocity greater than the
tip of the shoe (necessary for a decent kick distance).

57. A bus contains a 1500 kg flywheel (a disk that has a 0.600 m radius)
and has a total mass of 10,000 kg. (a) Calculate the angular velocity the
flywheel must have to contain enough energy to take the bus from rest to
a speed of 20.0 m/s, assuming 90.0% of the rotational kinetic energy can
be transformed into translational energy. (b) How high a hill can the bus
climb with this stored energy and still have a speed of 3.00 m/s at the top
of the hill? Explicitly show how you follow the steps in the Problem-
Solving Strategy for Rotational Energy.

58. A ball with an initial velocity of 8.00 m/s rolls up a hill without slipping.
Treating the ball as a spherical shell, calculate the vertical height it
reaches. (b) Repeat the calculation for the same ball if it slides up the hill
without rolling.

59. While exercising in a fitness center, a man lies face down on a bench
and lifts a weight with one lower leg by contacting the muscles in the
back of the upper leg. (a) Find the angular acceleration produced given
the mass lifted is 10.0 kg at a distance of 28.0 cm from the knee joint, the

moment of inertia of the lower leg is 0.900 kg ⋅ m2 , the muscle force is

1500 N, and its effective perpendicular lever arm is 3.00 cm. (b) How
much work is done if the leg rotates through an angle of 20.0º with a
constant force exerted by the muscle?

60. To develop muscle tone, a woman lifts a 2.00-kg weight held in her
hand. She uses her biceps muscle to flex the lower arm through an angle
of 60.0º . (a) What is the angular acceleration if the weight is 24.0 cm
from the elbow joint, her forearm has a moment of inertia of

0.250 kg ⋅ m2 , and the net force she exerts is 750 N at an effective

perpendicular lever arm of 2.00 cm? (b) How much work does she do?

61. Consider two cylinders that start down identical inclines from rest
except that one is frictionless. Thus one cylinder rolls without slipping,
while the other slides frictionlessly without rolling. They both travel a short
distance at the bottom and then start up another incline. (a) Show that
they both reach the same height on the other incline, and that this height
is equal to their original height. (b) Find the ratio of the time the rolling
cylinder takes to reach the height on the second incline to the time the
sliding cylinder takes to reach the height on the second incline. (c)
Explain why the time for the rolling motion is greater than that for the
sliding motion.

62. What is the moment of inertia of an object that rolls without slipping
down a 2.00-m-high incline starting from rest, and has a final velocity of

6.00 m/s? Express the moment of inertia as a multiple of MR2 , where

M is the mass of the object and R is its radius.
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63. Suppose a 200-kg motorcycle has two wheels like, the one
described in Problem 10.15 and is heading toward a hill at a speed of
30.0 m/s. (a) How high can it coast up the hill, if you neglect friction? (b)
How much energy is lost to friction if the motorcycle only gains an altitude
of 35.0 m before coming to rest?

64. In softball, the pitcher throws with the arm fully extended (straight at
the elbow). In a fast pitch the ball leaves the hand with a speed of 139
km/h. (a) Find the rotational kinetic energy of the pitcher’s arm given its

moment of inertia is 0.720 kg ⋅ m2 and the ball leaves the hand at a

distance of 0.600 m from the pivot at the shoulder. (b) What force did the
muscles exert to cause the arm to rotate if their effective perpendicular
lever arm is 4.00 cm and the ball is 0.156 kg?

65. Construct Your Own Problem

Consider the work done by a spinning skater pulling her arms in to
increase her rate of spin. Construct a problem in which you calculate the
work done with a “force multiplied by distance” calculation and compare it
to the skater’s increase in kinetic energy.

10.5 Angular Momentum and Its Conservation
66. (a) Calculate the angular momentum of the Earth in its orbit around
the Sun.

(b) Compare this angular momentum with the angular momentum of
Earth on its axis.

67. (a) What is the angular momentum of the Moon in its orbit around
Earth?

(b) How does this angular momentum compare with the angular
momentum of the Moon on its axis? Remember that the Moon keeps one
side toward Earth at all times.

(c) Discuss whether the values found in parts (a) and (b) seem consistent
with the fact that tidal effects with Earth have caused the Moon to rotate
with one side always facing Earth.

68. Suppose you start an antique car by exerting a force of 300 N on its
crank for 0.250 s. What angular momentum is given to the engine if the
handle of the crank is 0.300 m from the pivot and the force is exerted to
create maximum torque the entire time?

69. A playground merry-go-round has a mass of 120 kg and a radius of
1.80 m and it is rotating with an angular velocity of 0.500 rev/s. What is
its angular velocity after a 22.0-kg child gets onto it by grabbing its outer
edge? The child is initially at rest.

70. Three children are riding on the edge of a merry-go-round that is 100
kg, has a 1.60-m radius, and is spinning at 20.0 rpm. The children have
masses of 22.0, 28.0, and 33.0 kg. If the child who has a mass of 28.0 kg
moves to the center of the merry-go-round, what is the new angular
velocity in rpm?

71. (a) Calculate the angular momentum of an ice skater spinning at 6.00

rev/s given his moment of inertia is 0.400 kg ⋅ m2 . (b) He reduces his

rate of spin (his angular velocity) by extending his arms and increasing
his moment of inertia. Find the value of his moment of inertia if his
angular velocity decreases to 1.25 rev/s. (c) Suppose instead he keeps
his arms in and allows friction of the ice to slow him to 3.00 rev/s. What
average torque was exerted if this takes 15.0 s?

72. Consider the Earth-Moon system. Construct a problem in which you
calculate the total angular momentum of the system including the spins of
the Earth and the Moon on their axes and the orbital angular momentum
of the Earth-Moon system in its nearly monthly rotation. Calculate what
happens to the Moon’s orbital radius if the Earth’s rotation decreases due
to tidal drag. Among the things to be considered are the amount by which
the Earth’s rotation slows and the fact that the Moon will continue to have
one side always facing the Earth.

10.6 Collisions of Extended Bodies in Two Dimensions
73. Repeat Example 10.15 in which the disk strikes and adheres to the
stick 0.100 m from the nail.

74. Repeat Example 10.15 in which the disk originally spins clockwise at
1000 rpm and has a radius of 1.50 cm.

75. Twin skaters approach one another as shown in Figure 10.39 and
lock hands. (a) Calculate their final angular velocity, given each had an
initial speed of 2.50 m/s relative to the ice. Each has a mass of 70.0 kg,
and each has a center of mass located 0.800 m from their locked hands.
You may approximate their moments of inertia to be that of point masses
at this radius. (b) Compare the initial kinetic energy and final kinetic
energy.

Figure 10.39 Twin skaters approach each other with identical speeds. Then, the
skaters lock hands and spin.

76. Suppose a 0.250-kg ball is thrown at 15.0 m/s to a motionless person
standing on ice who catches it with an outstretched arm as shown in
Figure 10.40.

(a) Calculate the final linear velocity of the person, given his mass is 70.0
kg.

(b) What is his angular velocity if each arm is 5.00 kg? You may treat the
ball as a point mass and treat the person's arms as uniform rods (each
has a length of 0.900 m) and the rest of his body as a uniform cylinder of
radius 0.180 m. Neglect the effect of the ball on his center of mass so
that his center of mass remains in his geometrical center.

(c) Compare the initial and final total kinetic energies.

Figure 10.40 The figure shows the overhead view of a person standing motionless on
ice about to catch a ball. Both arms are outstretched. After catching the ball, the
skater recoils and rotates.

77. Repeat Example 10.15 in which the stick is free to have translational
motion as well as rotational motion.

10.7 Gyroscopic Effects: Vector Aspects of Angular
Momentum
78. Integrated Concepts

The axis of Earth makes a 23.5° angle with a direction perpendicular to
the plane of Earth’s orbit. As shown in Figure 10.41, this axis precesses,
making one complete rotation in 25,780 y.

(a) Calculate the change in angular momentum in half this time.

(b) What is the average torque producing this change in angular
momentum?

(c) If this torque were created by a single force (it is not) acting at the
most effective point on the equator, what would its magnitude be?
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Figure 10.41 The Earth’s axis slowly precesses, always making an angle of 23.5° with
the direction perpendicular to the plane of Earth’s orbit. The change in angular

momentum for the two shown positions is quite large, although the magnitude L is

unchanged.
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